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Abstract

A future video is the 2D projection of a 3D scene with
predicted camera and object motion. Accurate future video
prediction inherently requires understanding of 3D motion
and geometry of a scene. In this paper, we propose a RGBD
scene forecasting model with 3D motion decomposition. We
predict ego-motion and foreground motion that are com-
bined to generate a future 3D dynamic scene, which is then
projected into a 2D image plane to synthesize future motion,
RGB images and depth maps. Optional semantic maps can
be integrated. Experimental results on KITTI and Driving
datasets show that our model outperforms other state-of-
the-arts in forecasting future RGBD dynamic scenes.

1. Introduction

Future prediction is an exciting direction with limitless
potential applications in decision-making, control system
design, and navigation for intelligent agents. In this paper,
we study RGBD future scene synthesis, which refers to pre-
diction of videos and depth given a number of past frames.

Most approaches on future prediction aim to predict a
specific component in the future scene. They are mostly to
predict future color video frames [37, 30, 6, 15, 11, 12, 13]
or facilitate semantic understanding, including future se-
mantic segmentation [15, 11], instance segmentation pre-
diction [14], and 2D motion trajectories [12, 11].

Depth prediction is still new in this area with early work
of [17]. RGBD future prediction makes it possible to model
real-world dynamics. Existing approaches are mostly with
2D data and are self-supervised learning based. These ap-
proaches take past frames as input. Then a deep neural net-
work is utilized to directly generate future frames [4, 13]
with 2D optical flow [12, 11] as an intermediate represen-
tation. Approaches of [29, 6, 31] disentangled foreground
and background in 2D space. Luo et al. [16] proposed an
unsupervised solution for forecasting 3D motion in RGBD
data. This framework only operates in 2D domain and does
not explicitly reason the future 3D scene.

* indicates co-first authorship.

We note when the underlying 3D geometry of a scene is
ignored, it becomes difficult to obtain accurate optical flow
prediction since optical flow reflects a level of 2D projec-
tion of 3D motion in the physical world. Further, without
full geometric understanding, it is challenging to estimate
future depth where its change is affected by both 3D cam-
era motion and object motion. Our experiments show that
simply training a deep neural network in 2D for depth pre-
diction is not feasible.

With this understanding, unlike previous work, we ex-
plicitly reason scene dynamics in 3D space, jointly pre-
dicting semantic segmentation, RGB pixel color, and depth
information. For 3D motion, we separately forecast ego-
motion and object motion in the future. Our main contribu-
tion is threefold.

First, we raise the RGBD future prediction problem and
propose a self-supervised 3D motion decomposition ap-
proach for forecasting 3D motion without labeled data. Sec-
ond, on top of the predicted 3D motion, we present a general
framework for holistic future scene prediction for motion,
semantic, depth, and RGB images. Finally, our experimen-
tal results on KITTI [8], Driving [20] datasets show that our
method is effective to solve this new problem.

2. Related Work

Prior work on future prediction can be roughly catego-
rized into two groups. The first focuses on designing deep
neural network architectures or loss functions to directly
predict future RGB video frames [13, 19, 4, 33, 7, 2] or
high-level semantic description [15, 14, 30, 31]. Direct fu-
ture prediction is challenging because the solution space is
enormously large with high uncertainty. Xue et al. [37]
proposed the Cross Convolutional Network to model fu-
ture frames in a probabilistic fashion. Similarly, Byeon
et al. [4] proposed a future prediction framework that ag-
gregates contextual information with LSTM to avoid “blind
spot problem”. Progressive GAN [2] progressively synthe-
sizes frames from coarse to fine resolution. Luc et al. [15]
proposed an auto-regressive model for predicting semantic
segmentation. The following work [14] contains a feature
prediction network for future instance segmentation.

The other group concentrates on exploiting or modeling
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Figure 1: Motion forecasting with decomposition and composition. The input includes images (I
t�1, It), depth maps

(D
t�1, Dt

), and semantic maps (S
t�1, St

). (a) Motion decomposition module decomposes motion into ego motion [R|T ]
t�1,t

and moving object motion M
t�1,t. (b) The ego-motion prediction network and (c) the foreground motion prediction network

generate future ego-motion [R|T ]
t,t+1 and foreground motion M

t,t+1 respectively. (d) The motion composition module
composes a predicted motion field and a new 3D point cloud P

t+1. P
t+1 is then projected to a 2D image plane. M

t�1,t and
M

t,t+1 are color coded where R,G,B channels represent movement along x, y, z directions.

motion for understanding future dynamics [12, 11, 29, 26,
23, 32]. Liang et al. [12] jointly reasoned the duality rela-
tionship of optical flow and RGB videos with an adversar-
ial objective. Terwilliger et al. [26] suggested a recurrent
flow prediction framework for semantic prediction. Reda et
al. [23] learned a motion vector and a kernel for each pixel
to synthesize future frames. Jin et al. [11] designed a model
that jointly predicts complementary optical flow and seman-
tic information. Walker et al. [32] utilized variational meth-
ods to capture future uncertainty for motion trajectory pre-
diction from a static image. Luo et al. [16] directly pre-
dicted future 3D trajectories via LSTM for RGBD videos.

Mahjourian et al. [18] and Villegas et al. [29] are most
related to ours. Mahjourian et al. [18] synthesized frames
with the estimated depth maps and given future ego-motion.
Motion of objects and camera trajectories are not modeled
explicitly. Thus, this approach is limited to static scenes
where independently moving objects do not exist. In con-
trast, we explicitly model scene dynamics in 3D space by
separately predicting camera and object motion to produce
future frames. Villegas et al. [29] decomposed motion
and content to generate dynamics in videos. An encoder-
decoder architecture is utilized to synthesize frames di-
rectly, which may result in distortion of rigid objects. On
the contrary, our approach follows the geometry constraints
and can preserve rigid objects better.

Our work also shares similar spirit with unsupervised
motion estimation [38, 39, 28], where motion is decom-

posed into ego motion and camera motion, and depth es-
timation [36]. These methods estimate motion and depth in
current frame, while we predict future dynamics.

3. Overview

The proposed holistic RGBD future scene synthesis task
is to predict future motion and frames. The input in-
cludes two most recent RGBD frames (and possibly se-
mantic maps). The goal is to jointly predict future motion,
RGB frames, depth maps, and semantic maps. The variation
without semantic segmentation as input will be discussed in
Section 6.2. Our holistic prediction framework predicts fu-
ture frames by first forecasting 3D motion (Figure 1) and
then synthesizing frames (Figure 2).

To predict motion of future frame t + 1, we first
decompose motion into ego-motion [R|T ]

t�1,t and fore-
ground object motion M

t�1,t (Figure 1(a)). Then an ego-
motion prediction network and a foreground motion predic-
tion network are used to synthesize future camera motion
[R|T ]

t,t+1 (Figure 1(b)) and 3D foreground motion M
t,t+1

(Figure 1(c)) separately. 3D points P
t

are then locally trans-
formed by M

t,t+1 and globally transformed by [R|T ]
t,t+1

to generate 3D point cloud P
t+1 in next frame (Figure 1(d)).

It, along with RGBD and semantics, is projected to the im-
age plane in frame t + 1, resulting in intermediate RGB
image Ĩ

t+1, depth map D̃
t+1, and semantic map S̃

t+1.
These intermediate results are updated by a three-branch



refinement network (Figure 2). It outputs the refined color
image I

t+1, depth map D
t+1 and semantic segmentation

S
t+1, as illustrated in Figure 2. Further, it fills in miss-

ing pixels, removes noise and harmonizes structure. A se-
quence of future video frames can be synthesized by apply-
ing this model recurrently in future frames.

4. Motion Forecasting
We introduce the motion decomposition module to esti-

mate ego-motion [R|T ]
t,t�1 (equivalent to finding camera

pose) and 3D foreground object motion M
t�1,t. We present

an optical flow based method to separate motion in 3D.

Ego-motion estimation. Ego-motion is estimated based
on matching of background pixels. We find corresponding
background points and estimate camera trajectory in exist-
ing frames. First, we compute point clouds P

t�1 and P
t

from the depth maps as shown in Figure 1(a). Let (u
i

, v
i

) be
the 2D coordinates of pixel i and zt

i

be corresponding depth
in frame t. The 3D coordinates P

t

(u
i
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i

) = (xt

i
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, zt
i

) in
the camera coordinate system are derived as
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(1)

where (c
x

, c
y

) are the coordinates of the camera princi-
pal point. f

x

and f
y

are camera focal lengths. We apply
FlowNet 2.0 [10] to obtain 2D correspondence (u

i

, v
i

) in
frame t � 1 and (u

i

+ �ut�1,t
i

, v
i

+ �vt�1,t
i

) in frame t.
Also, the 3D location of correspondent points is derived ac-
cording to Equation (1). Then [R|T ]

t�1,t is estimated with
these points in the background (e.g. road, building). A back-
ground segmentation mask visualization is given in Figure 1
(black pixels in Mask

t�1). With point pairs P
t�1(ui

, v
i

)
and P

t

(u
i

+�ut�1,t
i

, v
i

+�vt�1,t
i

), the SVD based algo-
rithm [24] is adopted to estimate ego-motion [R|T ]

t�1,t.

Foreground motion estimation. To compute foreground
motion, ego-motion [R|T ]

t�1,t is utilized to transform P
t

to the camera coordinate system in frame t � 1. The trans-
formed location is denoted as P̄

t�1 = [R|T ]�1
t�1,tPt

. Then,
the 3D motion field M

t�1,t (shown in Figure 1) at location
(u

i

, v
i

) is computed as

Mt�1,t(ui, vi) = Maskt�1�
[

¯Pt�1(ui +�ut�1,t
i , vi +�vt�1,t

i )� Pt�1(ui, vi)].
(2)

The motion vector for pixel i is represented as
M

t�1,t(ui

, v
i

) = (�xt�1,t
i

,�yt�1,t
i

,�zt�1,t
i

) where
(�xt�1,t

i

,�yt�1,t
i

,�zt�1,t
i

) represents motion along
x, y, z regarding camera coordinates of frame t� 1.

4.1. Ego-motion Prediction

The ego-motion prediction network shown in Figure 1(b)
predicts the next-frame ego-motion. We design a net-
work to estimate the difference between [R|T ]

t�1,t and

[R|T ]
t,t+1. [R|T ] can be represented as a 6D vector

(✓
p

, ✓
r

, ✓
y

, T
x

, T
y

, T
z

), where (✓
p

, ✓
r

, ✓
y

) encodes rotation
and (T

x

, T
y

, T
z

) denotes translation.
We first design input feature encoder for the in-

put of color image I
t�1, It, depth map D

t�1, Dt

,
and semantic map S

t�1, St

. Structure of the input
feature encoder has convolutional layers followed by
a fully connected layer to generate encoded feature.
Meanwhile, a geometric network with three fully con-
nected layers maps previously estimated ego-motion i.e.
(✓t�1,t

p

, ✓t�1,t
r

, ✓t�1,t
y

, T t�1,t
x

, T t�1,t
y

, T t�1,t
z

) to intermedi-
ate feature. The output features of the two networks are then
processed by a fully connected layer to produce the differ-
ence of ego motion between frames t and t+ 1.

4.2. Foreground Motion Prediction

Our foreground motion prediction network predicts a 3D
motion field on foreground pixels. Since background ob-
ject motion can be determined by the ego-motion combined
with depth, we focus on estimating foreground motion. We
use a binary mask Mask

t

to indicate (potentially) moving
objects in frame t. The mask is determined based on the
semantic class of each object. For example, a car is in fore-
ground while buildings go to background. The foreground
motion prediction network is an encoder-decoder that out-
puts a three-channel prediction map M

t,t+1 representing the
3D motion of frame t. The architecture of this network is
provided in the supplementary material.

4.3. Motion Reconstruction

The motion reconstruction module reconstructs 3D mo-
tion combining the ego-motion [R|T ]

t,t+1 and foreground
motion M

t,t+1. In this process, a 3D point cloud P
t

in
frame t corresponds to P

t+1 in frame t + 1 with relation
of

P
t+1 = [R|T ]

t,t+1[Pt

+M
t,t+1 �Mask

t

]. (3)

Then the 3D point P
t+1 is projected onto the image plane

in frame t+ 1 as
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i
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x

,
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y
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i
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,
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where (ut+1
i

, vt+1
i

) represents the corresponding location at
frame t+1 for pixel i in frame t. With this formulation, the
future optical flow F

t,t+1 can be derived as

F
t,t+1(ui

, v
i

) = (ut+1
i

� u
i

, vt+1
i

� v
i

), (5)

and Ĩ
t+1, D̃t+1, S̃t+1 are represented as
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Figure 2: Refinement network. Taking as input the color images (I
t�1, It, Ĩt+1), depth maps (D

t�1, Dt

, D̃
t+1), and semantic

maps (S
t�1, St

, S̃
t+1), the refinement network synthesizes image I

t+1, depth map D
t+1 and semantic map S

t+1 by refining
the projected image Ĩ

t+1, depth D̃
t+1 and S̃

t+1.

The color and semantic information is directly copied from
the previous frame. Depth is determined by the 3D point
P
t+1. Further, depth {zt+1

i

} associated with each pixel is
used to determine the order of projection to handle occlu-
sion. When two points project into the same 2D location,
the point with larger depth is discarded.

4.4. Training

All modules in the motion prediction framework with
ego-motion prediction, motion reconstruction, and fore-
ground motion prediction are differentiable. Thus the whole
framework can be trained in an end-to-end manner.

Note that it is hard to obtain labeled data to supervise
foreground motion. To self-supervise 3D motion prediction
during training, we utilize the estimated optical flow F̂

t,t+1

[10] and the ground-truth depth D̂
t+1 to penalize incorrect

prediction on D̃
t+1 and F

t,t+1. The predicted depth map
D̃

t+1 in Figure 1 is incomplete. We thus use V t+1
D

, a binary
mask, to represent pixels with depth. The loss function L

M

for training this framework is

L
M

= L̃
F

+ L̃
D

, (7)

where L̃
F

and L̃
D

are the loss functions for optical flow and
depth respectively. They are expressed as

˜LF =

X

i

||Ft,t+1(ui, vi)� ˆFt,t+1(ui, vi)||1,

˜LD =

X

i

|| ˜Dt+1(ui, vi)� ˆDt+1(ui, vi)||1V t+1
D (ui, vi).

(8)

By combing L̃
F

and L̃
D

, training of the 3D motion predic-
tion network is well constrained. It can learn valid physical
movement of the camera and objects in 3D.

5. Refinement Network
The refinement network is visualized in Figure 2. The

semantic map is updated first, which is then utilized as guid-
ance to facilitate updating of depth map D

t+1 and RGB im-
age I

t+1. The predicted semantic map provides category
specific information beneficial to color image and depth
map prediction. This framework utilizes the auxiliary in-
formation from multiple tasks for future video prediction.

The refinement network consists of three encoder-
decoders as sub-networks for predicting semantics, color,
and depth respectively. The encoder-decoders for image
and depth synthesis are trained to learn the difference be-
tween Ĩ

t+1, D̃t+1 and the ground truth. We add a refine-
ment module of three convolution layers with ReLU and
layer normalization to produce the final results.

5.1. Training
The refinement network is trained in an end-to-end man-

ner supervised by task specific targets. The overall loss
function L

C

for this network is defined as

LC = LI + LS + LD,

LI =

HXWX

i=1

||It+1(ui, vi)� ˆIt+1(ui, vi)||1,

LD =

H⇥WX

i=1

||Dt+1(ui, vi)� ˆDt+1(ui, vi)||1,

LS =

H⇥WX

i=1

KX

k=1

� ˆSt+1(ui, vi, k) logS
p
t+1(ui, vi, k),

(9)

where L
I

, L
S

, and L
D

are task-specific loss functions for
color images, semantics and depth maps. H and W are im-



age spatial sizes. K is the number of categories for seman-
tic segmentation. Î

t+1, Ŝ
t+1, and D̂

t+1 are ground-truth for
image, semantic and depth respectively.

6. Experiments
Dataset. We conduct experiments on the KITTI
dataset [9] and the scene flow driving dataset [20].
The KITTI dataset contains 375x1242-resolution stereo
image sequences for driving scenes captured at 10FPS. The
dense depth maps are generated with the stereo matching
approach CRL [22]. The optical flow fields are derived
with FlowNet 2.0 [10]. We obtain semantic segmentation
by fine-tuning the method of [35] on KITTI semantic
segmentation dataset.

The KITTI dataset for our training and evaluation in-
cludes totally 29 video sequences (with 5k frames). We
randomly select 4 sequences (1.7k frames) for evaluation.
Hyper-parameters in experiments are tuned on the training
set. We note that the depth and semantic maps are not per-
fect as they are generated by existing algorithms. We also
evaluate the method on the Driving dataset [20] with syn-
thetic videos of perfect depth maps and optical flow fields
without segmentation information. We train our model on
the first 600 frames and test on the remaining 200 frames.
The frame resolution in the Driving dataset is 540x960.

Implementation details. Our whole model is imple-
mented with Tensorflow 1.2.1 [1]. For all networks, the
batch size is set to 1 with 50 epochs for training. Our learn-
ing rate is 1e�4 in the first 10 epochs and 1e�5 for others.
In all experiments, our model takes two frames as input and
outputs one or multiple future frames.

Evaluation metrics. We evaluate our model, baselines,
and prior work using several metrics measuring the accu-
racy of motion fields, video frames, depth maps, and seman-
tic segmentation in the future. Predicted motion fields are
measured using the average endpoint error (EPE) [3]. We
also evaluate predicted camera poses by comparison against
the ground-truth odometry. The translation components in
camera poses are measured with the root mean square error
(RMSE) [25]; the rotation components are evaluated with
the relative angle error (RAE) [25]. Semantic segmentation
is evaluated with mean intersection-over-union (IoU) [5].
Depth maps are evaluated in terms of the mean absolute er-
ror (MAE) [27] and the mean absolute error of the inverse
depth (iMAE) [27]. Future video frames are evaluated using
Peak Signal to Noise Ratio (PSNR) and Structural Similar-
ity (SSIM) index [34].

Baselines. To evaluate our 3D motion decomposition
framework for future prediction, we compare our model
with the following baselines where the first seven are vari-
ants of our model.

• “Copy the previous frame” (Copy): The next-frame
optical flow F

t,t+1 is copied from previous motion
field F

t�1,t. The image, depth map, and semantic seg-
mentation in frame t+1 are directly copied from frame
t. It is a simple baseline assuming static future.

• “Warp the previous frame” (Warp): We replace our
3D motion decomposition module with optical flow
F
t�1,t. We obtain a warped optical flow F

t,t+1 by
warping F

t�1,t. F
t,t+1 is then used to generate inter-

mediate image Ĩ
t+1, depth map D̃

t+1, and semantic
segmentation S̃

t+1, which are further processed with
our refinement network to generate final results. This
baseline verifies that recurrently warping the optical
flow is not sufficient to model future motion.

• “2D optical flow prediction” (Pred2D): We replace our
3D motion synthesis network with 2D optical flow pre-
diction network. The network takes as input images
(I

t�1, It), semantic segmentation maps (S
t�1, St

) and
depth maps (D

t�1, Dt

) to predict the next-frame opti-
cal flow. This baseline models motion only in 2D.

• “Copy 3D motion” (Copy3D): We remove the ego-
motion and foreground motion prediction modules
from Figure 1(b)&(c). Also, we directly copy the ego-
motion [R|T ]

t�1,t and M
t�1,t to the next frame. To

produce 3D motion M
t,t+1, M

t�1,t is warped accord-
ing to motion field F

t�1,t. This baseline aims to evalu-
ate the necessity of camera ego-motion and foreground
motion prediction in our model.

• “Directly predict 3D motion” (Pred3D): We design a
network to directly predict the whole 3D motion field
of the scene without motion decomposition. This base-
line is to evaluate importance of our 3D motion decom-
position module in Figure 1(a).

• “Without refinement” (WR): We evaluate the perfor-
mance without the refinement network to evaluate the
efficiency of refinement module.

• “Without joint refinement” (WJR): We optimize the re-
finement module fixing all other parts of the network
to validate the efficiency of joint refinement strategy.

• S2S [15]: S2S is a state-of-the-art method for future
semantic prediction. We finetune the released model
on our dataset with the publicly available code. Four
consecutive frames are used as input for S2S, in con-
trast to the two-frame input in our method.

• PredNet [13]: This is a previous approach to next-
frame prediction. We directly adopt released code and
model trained on KITTI. For multiple-frame predic-
tion, we apply the PredNet recurrently by taking the



Flow Depth Image Seg
EPE # MAE # iMAE # PSNR " SSIM " IoU"

S2S [15] - - - - - 60.42
PredNet [13] - 1.23 2.10 13.54 0.44 -
MCNet [29] - - - 17.25 0.52 -

Copy 11.73 1.38 2.29 15.50 0.48 53.30
Warp 10.39 1.30 2.31 15.65 0.48 54.57

Pred2D 7.56 1.24 2.68 16.44 0.53 62.13
Pred3D 8.74 1.15 1.99 16.23 0.56 58.85
Copy3D 5.43 1.07 1.62 17.52 0.55 67.14

WR - - - 14.61 0.38 57.74
WJR - 0.87 1.41 19.78 0.65 67.38
Ours 3.65 0.83 1.32 19.83 0.66 69.07

Table 1: Next-frame prediction on the KITTI dataset. "
means the higher the better and # is contrary. “-” means
invalid field.

Flow Depth Image Seg
EPE # MAE # iMAE # PSNR " SSIM " IoU "

S2S [15] - - - - - 37.31
PredNet [13] - 3.71 5.72 12.37 0.35 -

Copy 11.88 3.25 5.38 12.36 0.36 31.85
Warp 11.51 3.32 5.67 12.48 0.35 32.67

Pred2D 8.63 3.92 7.77 12.41 0.37 37.33
Pred3D 10.56 3.09 5.38 11.99 0.38 31.87

Ours 5.57 2.63 4.17 13.05 0.41 41.70

Table 2: Qualitative results of predicting five future frames.
" means the higher the better and # means contrary. “-”
means invalid field.

prediction results in the current frame to generate the
next frame prediction. We train PredNet to predict
both video frames and depth maps.

• MCNet [29] : This is a state-of-the-art approach to
next-frame prediction. Our method shares a similar
idea with MCNet to decompose the scene into motion
and content. We train and evaluate their method with
the released code on our dataset.

6.1. Evaluation on KITTI Dataset

We conduct both quantitative and qualitative experi-
ments on the KITTI dataset concerning the capability of
predicting future motion, images, depth maps, and seman-
tic segmentation. We also experiment with both next- and
multiple-frame prediction.

Next-frame prediction. Quantitative comparison be-
tween our approach and the baselines are shown in Table 1.
In terms of all the metrics, our method consistently outper-
forms the baselines. Compared with Pred2D, our method

RMSE # RAE #
Copy 0.483 0.024
Ours 0.380 0.013

Table 3: Next frame pose evaluation on KITTI dataset.
RAE means relative angle error for the rotation component.
RMSE represents root mean square error for the translation
component. # means the lower the better.

Flow Depth Image
EPE# MAE# iMAE# PSNR" SSIM"

Copy 20.16 6.39 3.21 17.58 0.62
Warp 9.56 6.06 3.75 17.45 0.63

Pred2D 5.47 14.70 5.55 17.22 0.63
Pred3D 6.43 3.14 3.11 18.48 0.67

Ours 1.87 1.88 1.27 22.08 0.77

Table 4: Qualitative results on Driving dataset for next
frame prediction. " means the higher the better, and # means
the lower the better.

achieves a much lower EPE, i.e. 3.65 vs 7.56. This demon-
strates that our 3D motion prediction framework can predict
more accurate optical flow compared to 2D-based solutions.
Our approach outperforms Pred3D with more accurate fu-
ture 3D motion.

Our method also works better than PredNet in terms of
image and depth prediction, and better than S2S regard-
ing semantic prediction. Further, our approach performs
better than MCNet in synthesizing future frames in terms
of both PSNR and SSIM. More importantly, our method
achieves more accurate future depth prediction than 2D-
based baselines such as Pred2D, manifesting that a 3D-
based model can potentially capture more complete geom-
etry of the scene for future depth. In addition, we also eval-
uate our model regarding the refinement module (WR) and
the joint refinement strategy (WJR). The refinement module
improves results by filling holes and harmonizing overall
appearance. Joint refinement is also helpful.

Visual comparisons are shown in Figure 3. Compared
with MCNet and Pred2D, our method preserves higher
quality structure of objects. Our results also do not contain
the blur visual artifacts that are however noticed in others.
More qualitative comparisons are contained in the supple-
mentary material.

Compared with the segmentation prediction results of
S2S [15] and Pred2D, our results retain small and thin ob-
jects in segmentation prediction. For example, the pole is
left out in the segmentation results of S2S and Pred2D.
Without motion decomposition, Pred3D does not distin-
guish between camera and moving-object motion. It makes
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Figure 3: Visualization of different methods on next-frame prediction on the KITTI dataset. Input images are at time t. In
the second row, the image is produced by MCNet [29] and depth map is produced by PredNet [13] while the segmentation
map is from S2S [15].

GT (FlowNet2.0 [10]) Pred2D Ours Ours (3D motion)
Figure 4: Future motion prediction results. The 3D motion is color coded where R-G-B corresponds to movement in x-y-z
directions respectively. In this case, the car is moving closer, corresponding to the example shown in Figure 3.

static objects not well regularized and possibly generate un-
desired effect (e.g. the static traffic sign is distorted). In
comparison, our results are closer to the next-frame ground
truth (the fifth row in Figure 3) while the baselines fail on
large motion regions (e.g. the nearest white car).

Evaluation of our predicted camera poses is listed in Ta-
ble 3. Compared with directly copying from [R|T ]

t�1,t, our
ego-motion prediction module reduces the mean angle error
(RAE) by approximately 50%. Our approach also improves
the translation metric RMSE by over 20%, which demon-
strates that our self-supervised framework for ego-motion
prediction can predict accurate future camera poses without
ground-truth for supervision.

We show the predicted next-frame motion produced by
our approach in Figure 4. Compared with the motion field

produced by Pred2D, our results are more natural regarding
e.g. the shape of cars. Visualization of moving-object mo-
tion is shown in Figure 4 where the car moves forward. Our
method generates 3D movement without 3D supervision.
Multiple-frame prediction. We compare our approach
with baselines on generating multiple future frames (5
frames on KITTI). Note that the frame rate of the KITTI
dataset is 10FPS and it contains large motion between
frames, which makes KITTI challenging to predict multi-
ple steps ahead. For all the approaches evaluated, we repeat
them to produce multiple future frames. We show qualita-
tive comparisons in Table 2. Our method outperforms all
the baselines regarding all the metrics. Our 3D motion de-
composition model facilitates long-term future prediction.

Qualitative comparison of generating 5 future frames is
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Figure 5: Results of predicting multiple frames. Depth and segmentation are provided in the supplement.

Our (Image) GT (Image) Our (Depth) GT (Depth)
Figure 6: Visualization of our results on the Driving dataset for next frame prediction. “GT” stands for ground truth.

shown in Figure 5. In the video produced by PredNet [13],
the video frames are blurry. Similarly, in the results of
Pred3D, objects are distorted. In contrast, our results pre-
serve the global structure of the scene and details of the ob-
jects. More results on multi-frame prediction are shown in
the supplement.

6.2. Evaluation on Driving Dataset

Driving dataset does not have segmentation annota-
tion. Therefore we train a deep neural network to produce
moving-object masks. We obtain the ground-truth masks
by the unsupervised motion segmentation method [21]. We
replace the semantic segmentation by estimated moving-
object masks in our model. The refinement network is mod-
ified to update the color images and depth maps.

Quantitative results are listed in Table 4. Our method
outperforms all the baselines on all the metrics. We demon-
strate that our method achieves competitive performance
even without semantic segmentation as input. Our approach
is applicable to RGBD videos without the need of semantic

segmentation. Visual illustrations are shown in Figure 6.

7. Conclusion
We have presented a 3D motion decomposition model

for future RGBD dynamic scene synthesis. Our method
predicts future scenes by first modeling scene dynamics into
camera motion and moving-object motion. We forecast fu-
ture ego-motion and object motion separately to avoid influ-
ence between them. We then integrate the two motion fields
for future scene synthesis. In our extensive experiments, we
have demonstrated that 3D motion decomposition is effec-
tive for future prediction. We believe our work shows a new
and promising direction for future scene prediction.
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